Extensible and Modular Generics for the Masses

Sean Leather, Johan Jeuring

Utrecht University

20 September, 2012
Previously...

You learned about:

- Datatypes and Kinds
- Lightweight Implementation of Generics and Dynamics (LIGD)
This time...

We’re going to talk about the library Extensible and Modular Generics for the Masses (EMGM).

- Define an example generic function
- Introduce the run-time type representation
- Add datatype-generic support
- Demonstrate support for ad-hoc cases
- Change the representation to be extensible and modular
- Define other generic functions
 - Producer functions
 - Higher-kindred datatypes
 - Abstracting over more than one type
Defining an Example: Equality (1)

Defining a generic function in EMGM involves several steps. First, let’s decide what the “ideal” type signature should look like.

\[\text{geq :: } a \rightarrow a \rightarrow \text{Bool} \]
Next, we need to define a `newtype` for the generic function.

```haskell
newtype Geq a = Geq { selEq :: a → a → Bool }
```

This is similar the use of `newtype` in LIGD.
Defining an Example: Equality (3)

Now, we implement the structural components of our generic function.

\[
\begin{align*}
\text{geq}_{\text{unit}}: \text{Unit} \rightarrow \text{Unit} & = \text{True} \\
\text{geq}_{\text{int}}: \text{i} \rightarrow \text{j} & = \text{i} \equiv \text{j} \\
\text{geq}_{\text{char}}: \text{c} \rightarrow \text{d} & = \text{c} \equiv \text{d} \\
\text{geq}_{\text{sum}}: \text{r} \rightarrow \text{L a}_1 \rightarrow \text{L a}_2 & = \text{selEq r a}_1 \text{ a}_2 \\
\text{geq}_{\text{sum}}: \text{r} \rightarrow \text{R b}_1 \rightarrow \text{R b}_2 & = \text{selEq r b}_1 \text{ b}_2 \\
\text{geq}_{\text{sum}}: \text{r} \rightarrow \text{a} \rightarrow _ & = \text{False} \\
\text{geq}_{\text{prod}}: \text{r} \rightarrow \text{a} : \times : \text{b}_1 \rightarrow \text{a} : \times : \text{b}_2 & = \text{selEq r a}_1 \text{ a}_2 \land \\
& \quad \text{selEq r b}_1 \text{ b}_2
\end{align*}
\]
Defining an Example: Equality (4)

That should look familiar. Here’s \texttt{geq} in LIGD.

\[
\begin{align*}
\text{geq (RUnit)} & \quad \text{Unit} \quad \text{Unit} \quad = \quad \text{True} \\
\text{geq (RInt)} & \quad \text{i} \quad \text{j} \quad = \quad \text{i} \equiv \text{j} \\
\text{geq (RChar)} & \quad \text{c} \quad \text{d} \quad = \quad \text{c} \equiv \text{d} \\
\text{geq (RSum r a r b)} & \quad \text{(L a}_1\text{)} \quad \text{(L a}_2\text{)} \quad = \quad \text{geq r}_a \text{ a}_1 \text{ a}_2 \\
\text{geq (RSum r a r b)} & \quad \text{(R b}_1\text{)} \quad \text{(R b}_2\text{)} \quad = \quad \text{geq r}_b \text{ b}_1 \text{ b}_2 \\
\text{geq (RSum r a r b)} & \quad _ \quad _ \quad = \quad \text{False} \\
\text{geq (RProd r a r b)} & \quad \text{(a}_1 \times \text{ b}_1\text{)} \quad \text{(a}_2 \times \text{ b}_2\text{)} \quad = \quad \text{geq r}_a \text{ a}_1 \text{ a}_2 \land \\
& \quad \quad \quad \quad \quad \text{geq r}_b \text{ b}_1 \text{ b}_2
\end{align*}
\]
Defining an Example: Equality (5)

Next, we create an instance of the `Generic` type class using our generic functions.

```haskell
instance Generic Geq where
  runit      = Geq geq_unit
  rint       = Geq geq_int
  rchar      = Geq geq_char
  rsum r a r b = Geq (geq_sum r a r b)
  rprod r a r b = Geq (geq_prod r a r b)
```

How does this tie the recursive knot with `selEq`?
Defining an Example: Equality (6)

At this point, our generic function is (partially) usable.

\[
\text{selEq (rprod rchar rint) ('Q' :×: 42) ('Q' :×: 42) ≡ True}
\]

But that’s not good enough...
We want to hide the type representation argument...

\[
\text{geq :: (Rep a) } \Rightarrow \ a \rightarrow a \rightarrow \text{Bool} \\
\text{geq = selEq rep}
\]

... to make it \textbf{implicit}:

\[
\text{geq ('Q' :\times: 42) ('Q' :\times: 42) } \equiv \text{True}
\]
The Mechanics: Run-time Type Representation (1)

Now, let’s talk about the run-time type representation machinery that allows us to define functions such as \(\text{geq} \).

First, you should recall these structure representation types. They are the same as those in LIGD.

```haskell
data Unit = Unit
data a :+: b = L a | R b
data a :×: b = a :×: b
```
The Mechanics: Run-time Type Representation (2)

The `Generic` class has a method for each representation type.

```haskell
class Generic g where
  runit :: g Unit
  rint  :: g Int
  rchar :: g Char
  rsum :: g a -> g b -> g (a :+: b)
  rprod :: g a -> g b -> g (a :×: b)
```

An instance of `Generic` defines a type-indexed function.
To make the representation value implicit, we use the `Rep` class.

```haskell
class Rep a where
    rep :: (Generic g) ⇒ g a
```

This allows us to substitute `rep` for any instance of `Generic`.
The instances of `Rep` include all representable types. We start with the universe of base and structure types.

```haskell
instance Rep Unit where
  rep = runit

instance Rep Int where
  rep = rint

instance Rep Char where
  rep = rchar

instance (Rep a, Rep b) ⇒ Rep (a :+: b) where
  rep = rsum rep rep

instance (Rep a, Rep b) ⇒ Rep (a :×: b) where
  rep = rprod rep rep
```
Expanding the Universe (1)

To make our functions truly generic, we need to expand our universe to include user-defined datatypes.

```haskell
class Generic g where
    ... 
    rtype :: EP b a → g a → g b
```

Recall the analogous LIGD constructor:

```haskell
RType :: EP b a → Rep a → Rep b
```

Recall the embedding-projection pair datatype.

```haskell
data EP d r = EP {from :: (d → r), to :: (r → d)}
```
Expanding the Universe (2)

The representation for `List` is:

\[
\text{rList :: (Generic g) } \Rightarrow \text{ g a } \rightarrow \text{ g (List a)} \\
\text{rList } r_a = \text{ rtype (EP fromList toList)} \\
\quad (\text{rsum runit (rprod } r_a \text{ (rList } r_a))
\]

Again, notice the similarity to LIGD:

\[
\text{rList } r_a = \text{ RType (EP fromList toList)} \\
\quad (\text{RSum RUnit (RProd } r_a \text{ (rList } r_a))
\]
To add \texttt{rList} as another implicit representation, we define an instance of \texttt{Rep} for \texttt{List}.

\begin{verbatim}
instance (Rep a) \Rightarrow Rep (List a) where
 rep = rList rep
\end{verbatim}
Expanding the Universe (4)

To make `geq` a generic function that supports user-defined datatypes, we add another case.

```haskell
geq_{\text{type}} \text{ep } r_a\ a_1\ a_2 = \text{selEq } r_a\ (\text{from ep } a_1)\ (\text{from ep } a_2)
```

```haskell
\text{instance } \text{Generic Geq where }

... 

\text{rtype ep } r_a = \text{Geq } (\text{geq}_{\text{type}}\ \text{ep } r_a)
```
Let’s write a generic `show` function. Think: `deriving Show`.

```haskell
gshow :: a → String
```

But we don’t have access to the constructor names. For that, we can add another case to our generic function signature.

```haskell
class Generic g where
  ...
  rcon :: String → g a → g a
```

`rcon` is a wrapper around other structure types.
We then add \texttt{rcon} to wrap each alternative in \texttt{rsum} with the name of the constructor.

\begin{verbatim}
\begin{verbatim}
\texttt{rList :: (Generic g) \Rightarrow g a \rightarrow g (List a)}
\texttt{rList r} = \texttt{rtype (EP fromList toList)}
\texttt{(rsum (rcon "Nil" runit)}
\texttt{(rcon "Cons" (rprod r a (rList r a))))}
\end{verbatim}
\end{verbatim}
Now, we can implement the cases of `gshow`. Most of the entries are exactly as you would expect (see lecture notes).

```haskell
newtype Gshow a = Gshow { selShow :: a -> String }
gshow_unit Unit = ""
...
gshow_type ep r a a = selShow r a (from ep a)
gshow_con s r a a = "(" ++ s ++
                   " " ++ selShow r a ++
                   ")"

instance Generic Gshow where
    runit = Gshow gshow_unit
    ...
```
The final generic show function looks like this:

\[
gshow :: (\text{Rep } a) \Rightarrow a \rightarrow \text{String}
\]
\[
gshow = \text{selShow } \text{rep}
\]

And it works like this:

\[
gshow (\text{Cons 4 } (\text{Cons 2 } \text{Nil})) \equiv "(\text{Cons 4 } (\text{Cons 2 } (\text{Nil }))")"
\]

But the output is ugly! We need to fix it...
We want something specific for \texttt{List}. Instead of the general \texttt{rList} representation based on \texttt{rtype}, we can add a special list case to \texttt{Generic}.

\begin{verbatim}
class Generic g where

 ...

 list :: g a → g (List a)

\end{verbatim}

We also need to register \texttt{list} as a representable type.

\begin{verbatim}
instance (Rep a) ⇒ Rep (List a) where

 rep = list rep

\end{verbatim}
We extend `gshow` for lists...

\[
\begin{align*}
gshow_{\text{list}} \, ra \, \text{Nil} &= \ "\ [] \" \\
gshow_{\text{list}} \, ra \, (\text{Cons a as}) &= \text{selShow} \, ra \, a \, \# "\ : \" \ \# \\
& \quad \text{selShow} \, (\text{list} \, ra) \, \text{as}
\end{align*}
\]

\textbf{instance} Generic Gshow \textbf{where}

\[
\begin{align*}
& \quad \ldots \\
& \quad \text{list} \, ra = \text{Gshow} \, (gshow_{\text{list}} \, ra)
\end{align*}
\]

\ldots arriving at a more concise output:

\[
gshow \, (\text{Cons} \, 4 \, (\text{Cons} \, 2 \, \text{Nil})) \equiv \ "4:2:[\]"
\]
Becoming Modular and Extensible (1)

Modifying the *Generic* class for every type is bad. The process is not modular and reduces the reusability of a library. (Just like LIGD.) We can change this with *EMGM*. Let’s try a hierarchy of classes.

```haskell
class (Generic g) ⇒ GenericList g where
  rlist :: g a → g (List a)
  rlist = rList

instance GenericList Gshow where
  rlist r_a = Gshow (gshow_list r_a)
```

We can now use `selShow`.

```
selShow (rlist rint) (Cons 2 Nil) ≡ "2: []"
```
Becoming Modular and Extensible (2)

What happens when we define the following instance?

```haskell
instance (Rep a) ⇒ Rep (List a) where
  rep = rlist rep
```

GHC complains:

```
Could not deduce (GenericList g)
  from the context (Rep (List a), Rep a, Generic g)
  arising from a use of `rlist` at ...
```

Possible fix:
```
add (GenericList g) to the context of
  the type signature for `rep` ...
```
The current type signature for rep:

\[\text{rep :: (Generic } g, \text{ Rep } a) \Rightarrow g \, a \]

What happens if we follow GHC’s advise?

Possible fix:

add \((\text{GenericList } g)\) to the context of the type signature for ‘rep’ ...
Instead, let’s not assume that \(g \) is always an instance of \(\text{Generic} \). We abstract over the type constructor in \(\text{Rep} \).

```haskell
class Rep g a where
    rep :: g a
```
We rewrite the instances from before:

\[
\text{instance } (\text{Generic } g) \Rightarrow \text{Rep } g \text{ Unit where }
\]
\[
\text{rep } = \text{runit}
\]

\[
\text{instance } (\text{Generic } g, \text{Rep } g \text{ a, Rep } g \text{ b}) \Rightarrow \text{Rep } g \text{ (a :+: b) where rep } = \text{rsum rep rep}
\]

...

And use \text{GenericList} in the context for the \text{List} instance instead of \text{Generic}.

\[
\text{instance } (\text{GenericList } g, \text{Rep } g \text{ a}) \Rightarrow \text{Rep } g \text{ (List a) where }
\]
\[
\text{rep } = \text{rlist rep}
\]
Lastly, we rewrite the generic show...

gshow :: (Rep Gshow a) ⇒ a → String
gshow = selShow rep

... by explicitly filling in the newtype Gshow for the \(g \) parameter. Let’s move on to some other examples. Some of them challenge the approaches we’ve shown so far.
Here is a simple generic producer function in its entirety.

```haskell
newtype Gempty a = Gempty { selEmpty :: a }

instance Generic Gempty where
  runit = Gempty Unit
  rint = Gempty 0
  rchar = Gempty '\NUL'
  rsum r a r b = Gempty (L (selEmpty r a))
  rprod r a r b = Gempty (selEmpty r a :×: selEmpty r b)
  rtype ep r a = Gempty (to ep (selEmpty r a))
  rcon s r a = Gempty (selEmpty r a)

gempty :: (Rep Gempty a) ⇒ a

gempty = selEmpty rep
```
We have dealt with types of kind \(\ast \) up to this point. How do we deal with kind \(\ast \to \ast \)? These include the “container” datatypes: \(\text{List} \ a \), \(\text{Tree} \ a \), etc.
We use a generic \texttt{crush} function as an example.
Higher Kinds: Crush (2)

Recall the standard \texttt{foldr} function:

\[
\texttt{foldr} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
\]

It generalizes to \texttt{crushr}:

\[
\texttt{crushr} :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow f\ a \rightarrow b
\]

- \((a \rightarrow b \rightarrow b)\) — A “combining” function
- \(b\) — A “zero” value
- \(f\ a\) — A container
Higher Kinds: Crush (3)

The type-indexed function is straightforward.

```haskell
newtype Crush b a = Crush { selCrush :: a → b → b }

crushr_unit _ e = e

... 

crushr_sum r_a r_b (L a) e = selCrush r_a a e

crushr_sum r_a r_b (R b) e = selCrush r_b b e

crushr_prod r_a r_b (a :×: b) e = selCrush r_a a (selCrush r_b b e)

crushr_type ep r_a a e = selCrush r_a (from ep a) e

instance Generic (Crush b) where
  runit = Crush crushr_unit
  ...
```
We have `selCrush`, so how do we write `crushr`? Recall `rep` again.

```
class Rep g a where
    rep :: g a
```

The type variable `a` has kind `∗`. We want to abstract over container types of the form `f a` where `f` has kind `∗ → ∗`.

Key: *The type of the representation function reflects the kind of the represented type.*

```
class FRep g f where
    frep :: g a → g (f a)
```
Translating an instance from Rep

\begin{verbatim}
instance (Generic g, Rep g a) ⇒ Rep g (List a) where
 rep = rList rep
\end{verbatim}

to FRep

\begin{verbatim}
instance (Generic g) ⇒ FRep g List where
 frep = rList
\end{verbatim}

requires removing all references to the type variables for the container’s element.
How do we come up with ...

\[
\text{crushr :: (...) \Rightarrow (a \to b \to b) \to b \to f\ a \to b}
\]

... given this, ...

\[
\text{selCrush :: Crush b a \to a \to b \to b}
\]

... this, ...

\[
\text{frep :: (FRep g f) \Rightarrow g\ a \to g\ (f\ a)}
\]

... and this?

\[
\text{Crush :: (a \to b \to b) \to Crush b a}
\]
Let’s assemble this type jigsaw puzzle:

selCrush :: Crush b a → a → b → b
frep :: (FRep g f) ⇒ g a → g (f a)
Crush :: (a → b → b) → Crush b a

First, frep ◦ Crush :

frep ◦ Crush ::
(FRep (Crush b) f) ⇒ (a → b → b) → Crush b (f a)
Higher Kinds: Crush (8)

Let’s assemble this type jigsaw puzzle:

\[
\text{selCrush} :: \text{Crush } b \ a \to a \to b \to b
\]

\[
\text{frep} :: (\text{FRep } g \ f) \Rightarrow g \ a \to g \ (f \ a)
\]

\[
\text{Crush} :: (a \to b \to b) \to \text{Crush } b \ a
\]

Then, \(\text{selCrush} \circ \text{frep} \circ \text{Crush} ::\)

\[
\text{selCrush} \circ \text{frep} \circ \text{Crush} :: (\text{FRep } (\text{Crush } b) \ f) \Rightarrow (a \to b \to b) \to f \ a \to b \to b
\]
Finally, we can define \(\text{crushr} \).

\[
\text{crushr} :: (\text{FRep} (\text{Crush} b) f) \Rightarrow (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow f a \rightarrow b \\
\text{crushr} f z x = \text{selCrush} (\text{frep} (\text{Crush} f)) \times z
\]

And we can use it, too.

\[
\text{gflatten} :: (\text{FRep} (\text{Crush} [a]) f) \Rightarrow f a \rightarrow [a] \\
\text{gflatten} = \text{crushr} (:) [] \\
\text{gflatten} (\text{Cons} 4 (\text{Cons} 2 \text{Nil})) \equiv [4, 2]
\]
The standard `map` function is a very handy function. We often want to apply a function to all elements in a list.

\[
\text{map} :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
\]

Why don’t we generalise this to other datatypes as we generalised `foldr` to `crushr`?

\[
\text{gmap} :: (a \rightarrow b) \rightarrow f\ a \rightarrow f\ b
\]
The type-indexed function.

\[
\textbf{newtype} \ Gmap \ a \ b = Gmap \{ \text{selMap} :: a \to b \} \\
\text{gmap}_{\text{unit}} \quad \times \quad = \times \\
\ldots \\
\text{gmap}_{\text{sum}} \quad r_a \ r_b \ (L \ a) \quad = \ L \ (\text{selMap} \ r_a \ a) \\
\text{gmap}_{\text{sum}} \quad r_a \ r_b \ (R \ b) \quad = \ R \ (\text{selMap} \ r_b \ b) \\
\text{gmap}_{\text{prod}} \quad r_a \ r_b \ (a \times b) \quad = \ \text{selMap} \ r_a \ a \times \text{selMap} \ r_b \ b \\
\text{gmap}_{\text{type}} \ ep_1 \ ep_2 \ r_a \ a \quad = \ (to \ ep_2 \circ \text{selMap} \ r_a \circ \text{from} \ ep_1) \ a
\]
Higher Abstraction: Map (3)

gmap is both a generic consumer and generic producer, so we must abstract over two types, input and output.

```haskell
class Generic2 g where
  runit2 :: g Unit Unit
  rint2  :: g Int Int
  rchar2 :: g Char Char
  rsum2 :: g a1 a2 → g b1 b2 → g (a1 :+: b1) (a2 :+: b2)
  rprod2 :: g a1 a2 → g b1 b2 → g (a1 :×: b1) (a2 :×: b2)
  rtype2 :: EP a2 a1 → EP b2 b1 → g a1 b1 → g a2 b2
```
We define our instance of `Generic2`.

```haskell
instance Generic2 Gmap where
  runit2        = Gmap gmap_unit
...
  rtype2 ep1 ep2 ra = Gmap (gmap_type ep1 ep2 ra)
```

Since we have this new `rtype2` method (rather than `rtype`), we need to redefine our list representation.

```haskell
rList2 :: (Generic2 g) ⇒ g a b → g (List a) (List b)
rList2 ra = rtype2 (EP fromList toList)
            (EP fromList toList)
            (rsum2 runit2 (rprod2 ra (rList2 ra)))
```
We can immediately use the list representation to implement the standard map on List containers.

```haskell
mapList :: (a -> b) -> List a -> List b
mapList f = selMap (rList2 (Gmap f))
```

But our ultimate goal (as always) is to generalise...
Higher Abstraction: Map (6)

We can’t use the `FRep` class. Why?

```haskell
class FRep g f where
  frep :: g a → g (f a)
```

We must extend it to support the higher-kindred `g (* → * → *)`, i.e. abstraction over two types.

```haskell
class FRep2 g f where
  frep2 :: g a b → g (f a) (f b)

instance (Generic2 g) ⇒ FRep2 g List where
  frep2 = rList2
```

Our instance for `List` is similar to the instance for `FRep`.
We can now define \texttt{gmap} with a method similar to how we defined \texttt{crushr}.

\[
gmap :: (\text{FRep2 \ Gmap \ f}) \Rightarrow (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b
\]

\[
gmap \ f = \text{selMap \ (frep2 \ (Gmap \ f))}
\]
Conclusions

We have covered the following concepts of using generic functions in EMGM:

- Equality: basic
- Show: ad-hoc, extensible, and modular
- Empty: producer
- Crush: higher-kinded datatypes
- Map: abstraction over more than one type